Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 841921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756626

RESUMO

Metastatic breast cancer is challenging to effectively treat, highlighting the need for an improved understanding of host factors that influence metastatic tumor cell colonization and growth in distant tissues. The lungs are a common site of breast cancer metastasis and are host to a population of tissue-resident eosinophils. Eosinophils are granulocytic innate immune cells known for their prominent roles in allergy and Th2 immunity. Though their presence in solid tumors and metastases have been reported for decades, the influence of eosinophils on metastatic tumor growth in the lungs is unclear. We used transgenic mouse models characterized by elevated pulmonary eosinophils (IL5Tg mice) and eosinophil-deficiency (ΔdblGATA mice), as well as antibody-mediated depletion of eosinophils, to study the role of eosinophils in EO771 mammary tumor growth in the lungs. We found that IL5Tg mice exhibit reduced pulmonary metastatic colonization and decreased metastatic tumor burden compared to wild-type (WT) mice or eosinophil-deficient mice. Eosinophils co-cultured with tumor cells ex vivo produced peroxidase activity and induced tumor cell death, indicating that eosinophils are capable of releasing eosinophil peroxidase (EPX) and killing EO771 tumor cells. We found that lung eosinophils expressed phenotypic markers of activation during EO771 tumor growth in the lungs, and that metastatic growth was accelerated in eosinophil-deficient mice and in WT mice after immunological depletion of eosinophils. Our results highlight an important role for eosinophils in restricting mammary tumor cell growth in the lungs and support further work to determine whether strategies to trigger local eosinophil degranulation may decrease pulmonary metastatic growth.

2.
Oncoimmunology ; 11(1): 2010905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481284

RESUMO

Current immunotherapies for lung cancer are only effective in a subset of patients. Identifying tumor-derived factors that facilitate immunosuppression offers the opportunity to develop novel strategies to supplement and improve current therapeutics. We sought to determine whether expression of driver oncogenes in lung cancer cells affects cytokine secretion, alters the local immune environment, and influences lung tumor progression. We demonstrate that oncogenic EGFR and KRAS mutations, which are early events in lung tumourigenesis, can drive cytokine and chemokine production by cancer cells. One of the most prominent changes was in CCL5, which was rapidly induced by KRASG12V or EGFRL858R expression, through MAPK activation. Immunocompetent mice implanted with syngeneic KRAS-mutant lung cancer cells deficient in CCL5 have decreased regulatory T cells (Tregs), evidence of T cell exhaustion, and reduced lung tumor burden, indicating tumor-cell CCL5 production contributes to an immune suppressive environment in the lungs. Furthermore, high CCL5 expression correlates with poor prognosis, immunosuppressive regulatory T cells, and alteration to CD8 effector function in lung adenocarcinoma patients. Our data support targeting CCL5 or CCL5 receptors on immune suppressive cells to prevent formation of an immune suppressive tumor microenvironment that promotes lung cancer progression and immunotherapy insensitivity.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Receptores ErbB/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral
3.
Oncoimmunology ; 10(1): 1959978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377597

RESUMO

Hypoxia develops in germinal centers (GCs) induced by model antigens; however, it is unknown whether tumor-reactive GCs are also hypoxic. We identified GC hypoxia in lymph nodes (LNs) draining murine mammary tumors and lethally irradiated tumor cells, and found that hypoxia is associated with the levels of antibody-secreting B cells. Hypoxic culture conditions impaired the proliferation of activated B cells, and inhibited class-switching to IgG1 and IgA immunoglobulin isotypes in vitro. To assess the role of the hypoxic response in tumor-reactive GCs in vivo, we deleted von Hippel-Lindau factor (VHL) in class-switched B cells and found decreased GC B cells in tumor-draining LNs, reduced class-switched and tumor-specific antibodies in the circulation, and modified phenotypes of tumor-infiltrating T cells and macrophages. We also detected the hypoxia marker carbonic anhydrase IX in the GCs of LNs from breast cancer patients, providing evidence that GC hypoxia develops in humans. We conclude that GC hypoxia develops in TDLNs, and that the hypoxic response negatively regulates tumor-induced humoral immune responses in preclinical models.


Assuntos
Neoplasias da Mama , Imunidade Humoral , Animais , Feminino , Centro Germinativo , Humanos , Hipóxia , Imunoglobulina G , Linfonodos , Camundongos
4.
Sci Rep ; 11(1): 2097, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483550

RESUMO

Pathological links between neurodegenerative disease and cancer are emerging. LRRK2 overactivity contributes to Parkinson's disease, whereas our previous analyses of public cancer patient data revealed that decreased LRRK2 expression is associated with lung adenocarcinoma (LUAD). The clinical and functional relevance of LRRK2 repression in LUAD is unknown. Here, we investigated associations between LRRK2 expression and clinicopathological variables in LUAD patient data and asked whether LRRK2 knockout promotes murine lung tumorigenesis. In patients, reduced LRRK2 was significantly associated with ongoing smoking and worse survival, as well as signatures of less differentiated LUAD, altered surfactant metabolism and immunosuppression. We identified shared transcriptional signals between LRRK2-low LUAD and postnatal alveolarization in mice, suggesting aberrant activation of a developmental program of alveolar growth and differentiation in these tumors. In a carcinogen-induced murine lung cancer model, multiplex IHC confirmed that LRRK2 was expressed in alveolar type II (AT2) cells, a main LUAD cell-of-origin, while its loss perturbed AT2 cell morphology. LRRK2 knockout in this model significantly increased tumor initiation and size, demonstrating that loss of LRRK2, a key Parkinson's gene, promotes lung tumorigenesis.


Assuntos
Adenocarcinoma/induzido quimicamente , Adenocarcinoma/genética , Carcinógenos/toxicidade , Predisposição Genética para Doença , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Doença de Parkinson/genética , Adenocarcinoma/patologia , Diferenciação Celular , Cocarcinogênese , Instabilidade Genômica , Humanos , Neoplasias Pulmonares/patologia , Fumar
5.
Cancer Lett ; 493: 31-40, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-32763272

RESUMO

Hypoxic tumour cells are radiation-resistant and are associated with poor therapeutic outcome. A poorly understood source of tumour hypoxia is unstable perfusion, which exposes tumour cells to varying oxygen tensions over time creating "transiently" hypoxic cells. Evidence suggests that angiotensin II type 1 receptor blockers (ARBs) can improve tumour perfusion by reducing collagen deposition from cancer associated fibroblasts (CAFs). However, the influence of ARBs on transient hypoxia and tumour radiation response is unknown. We tested how the ARBs losartan and telmisartan affected the solid tumour microenvironment, using fluorescent perfusion dyes and positron emission tomography to quantify tumour perfusion, and a combination of hypoxia markers and the hemorheological agent pentoxifylline to assess transient tumour hypoxia. We found CAF-containing tumours have reduced collagen I levels in response to telmisartan, but not losartan. Telmisartan significantly increased tumour blood flow, stabilized microregional tumour perfusion, and decreased tumour hypoxia by reducing the development of transient hypoxia. Telmisartan-treated tumours were more responsive to radiation, indicating that telmisartan reduces a therapeutically important population of transiently hypoxic tumour cells. Our findings indicate telmisartan is capable of modifying the tumour microenvironment to stabilize tumour perfusion, reduce transient hypoxia, and improve tumour radiation response.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Neoplasias/terapia , Radiossensibilizantes/administração & dosagem , Telmisartan/administração & dosagem , Hipóxia Tumoral/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Corantes Fluorescentes/administração & dosagem , Humanos , Losartan/administração & dosagem , Losartan/farmacologia , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Pentoxifilina/administração & dosagem , Tomografia por Emissão de Pósitrons , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Radioterapia , Telmisartan/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Circ Res ; 126(10): e61-e79, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32151196

RESUMO

RATIONALE: Monocytes are key effectors of the mononuclear phagocyte system, playing critical roles in regulating tissue homeostasis and coordinating inflammatory reactions, including those involved in chronic inflammatory diseases such as atherosclerosis. Monocytes have traditionally been divided into 2 major subsets termed conventional monocytes and patrolling monocytes (pMo) but recent systems immunology approaches have identified marked heterogeneity within these cells, and much of what regulates monocyte population homeostasis remains unknown. We and others have previously identified LYN tyrosine kinase as a key negative regulator of myeloid cell biology; however, LYN's role in regulating specific monocyte subset homeostasis has not been investigated. OBJECTIVE: We sought to comprehensively profile monocytes to elucidate the underlying heterogeneity within monocytes and dissect how Lyn deficiency affects monocyte subset composition, signaling, and gene expression. We further tested the biological significance of these findings in a model of atherosclerosis. METHODS AND RESULTS: Mass cytometric analysis of monocyte subsets and signaling pathway activation patterns in conventional monocytes and pMos revealed distinct baseline signaling profiles and far greater heterogeneity than previously described. Lyn deficiency led to a selective expansion of pMos and alterations in specific signaling pathways within these cells, revealing a critical role for LYN in pMo physiology. LYN's role in regulating pMos was cell-intrinsic and correlated with an increased circulating half-life of Lyn-deficient pMos. Furthermore, single-cell RNA sequencing revealed marked perturbations in the gene expression profiles of Lyn-/- monocytes with upregulation of genes involved in pMo development, survival, and function. Lyn deficiency also led to a significant increase in aorta-associated pMos and protected Ldlr-/- mice from high-fat diet-induced atherosclerosis. CONCLUSIONS: Together our data identify LYN as a key regulator of pMo development and a potential therapeutic target in inflammatory diseases regulated by pMos.


Assuntos
Aterosclerose/genética , Citometria de Fluxo , Heterogeneidade Genética , Monócitos/enzimologia , RNA-Seq , Transdução de Sinais/genética , Análise de Célula Única , Transcriptoma , Quinases da Família src/genética , Animais , Aterosclerose/enzimologia , Aterosclerose/imunologia , Aterosclerose/patologia , Sobrevivência Celular , Células Cultivadas , Senescência Celular , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/patologia , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Quinases da Família src/deficiência
7.
Breast Cancer Res ; 21(1): 103, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488209

RESUMO

BACKGROUND: Solid tumors produce proteins that can induce the accumulation of bone marrow-derived cells in various tissues, and these cells can enhance metastatic tumor growth by several mechanisms. 4T1 murine mammary tumors are known to produce granulocyte colony-stimulating factor (G-CSF) and increase the numbers of immunosuppressive CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) in tissues such as the spleen and lungs of tumor-bearing mice. While surgical resection of primary tumors decreases MDSC levels in the spleen, the longevity and impact of MDSCs and other immune cells in the lungs after tumor resection have been less studied. METHODS: We used mass cytometry time of flight (CyTOF) and flow cytometry to quantify MDSCs in the spleen, peripheral blood, and lungs of mice bearing orthotopic murine mammary tumors. We also tested the effect of primary tumor resection and/or gemcitabine treatment on the levels of MDSCs, other immune suppressor and effector cells, and metastatic tumor cells in the lungs. RESULTS: We have found that, similar to mice with 4T1 tumors, mice bearing metastatic 4T07 tumors also exhibit accumulation of CD11b+Gr1+ MDSCs in the spleen and lungs, while tissues of mice with non-metastatic 67NR tumors do not contain MDSCs. Mice with orthotopically implanted 4T1 tumors have increased granulocytic (G-) MDSCs, monocytic (M-) MDSCs, macrophages, eosinophils, and NK cells in the lungs. Resection of primary 4T1 tumors decreases G-MDSCs, M-MDSCs, and macrophages in the lungs within 48 h, but significant numbers of functional immunosuppressive G-MDSCs persist in the lungs for 2 weeks after tumor resection, indicative of an environment that can promote metastatic tumor growth. The chemotherapeutic agent gemcitabine depletes G-MDSCs, M-MDSCs, macrophages, and eosinophils in the lungs of 4T1 tumor-bearing mice, and we found that treating mice with gemcitabine after primary tumor resection decreases residual G-MDSCs in the lungs and decreases subsequent metastatic growth. CONCLUSIONS: Our data support the development of therapeutic strategies to target MDSCs and to monitor MDSC levels before and after primary tumor resection to enhance the effectiveness of immune-based therapies and improve the treatment of metastatic breast cancer in the clinic.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Neoplasias Mamárias Experimentais/patologia , Mastectomia , Células Supressoras Mieloides/efeitos dos fármacos , Animais , Antígenos Ly/metabolismo , Antígeno CD11b/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Eosinófilos/patologia , Feminino , Células Matadoras Naturais/patologia , Neoplasias Pulmonares/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/imunologia , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...